Phenoxybenzamine Is Neuroprotective in a Rat Model of Severe Traumatic Brain Injury
نویسندگان
چکیده
Phenoxybenzamine (PBZ) is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI). While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD). Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 µM-1 mM) and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.
منابع مشابه
Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological and molecular studies
Objective(s): Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. Clinically, it is essential to limit the development of cognitive impairment after TBI. In the present study, the neuroprotective effects of gallic acid (GA) on neurological score, memory, long-term potentiation (LTP) from hippocampal dentate gyrus (hDG), brain lipid peroxidation an...
متن کاملNeuroprotective Effects of Berberine After Severe Traumatic Brain Injury in Male Rats: The Role of IL-1β and IL 10
Background and purpose: Traumatic brain injury (TBI) is the leading cause of death in young people. Berberine is a flavonoid rich in barberries and many traditional Iranian herbal remedies that could be used in treatment of neurodegenerative diseases. These properties make it a viable treatment for neurodegenerative diseases. Therefore, this study intended to investigate the neuroprotective ac...
متن کاملP143: The Neuroprotective Effect of Chloroquine in Animal Model of Traumatic Brain Injury
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality in young adults and children, and is a leading public health problem worldwide. In TBI, neurological impairment is caused by immediate brain tissue disruption (primary injury) and post‑injury cellular and molecular events (secondary injury) that exacerbate the primary neurological insult. However, the destructi...
متن کاملThe Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat
Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...
متن کاملNeuroprotective Effects of Allicin on Neurological Scores, Blood Brain Barrier Permeability and Brain Edema Following Severe Traumatic Brain Injury in Male Rats: A Behavioral, Biochemical and Histological Study
Background and purpose: Allicin has a wide range of pharmacological functions, all of which can be demonstrated in anti-inflammatory, antioxidant, antifungal and anti-tumor activities. In this research, we investigated the neuroprotective role of allicin in the process of diffuse traumatic brain injury and its effect on interleukin levels and histological changes in rats. Materials and method...
متن کامل